If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-16x=0
a = 9; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·9·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*9}=\frac{0}{18} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*9}=\frac{32}{18} =1+7/9 $
| -3-4n=-8+5n-8n | | 7r+5r= | | 8^3x=1 | | 36+4x-12=180 | | 61+x-2x=180 | | 144=12(5−14k) | | 50-2x)=(38-2x | | -x2+3x-5=0 | | 5/6x+4=2 | | 9x2-16x=00 | | 31+3y-8=13y-13-4y | | 3t(t+5)=-18 | | 3=-2/3x-0 | | -(x-1=5 | | 22=x-11 | | 2(4x-3)=2(2x-5) | | 6x+4=8x-16 | | 2x^2-17x-1=x | | 4(8x-8)=192 | | x/11=25 | | 12y^2(6-1=0 | | 4y=47-1/3(6y+15) | | 8x-2-5x=3x+13 | | 3(x+8)=2(4x+27 | | x/15=x+13 | | 6(k-5)=-48 | | 4x+3=9x-6 | | -1+6f=0f | | 5(3x-4)=5(-2x-4) | | 1=r/6+3 | | 1/3x*756-45=9 | | (8x)/(5)+(2)/(15)=-(1)/(5) |