If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-11=0
a = 9; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·9·(-11)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*9}=\frac{0-6\sqrt{11}}{18} =-\frac{6\sqrt{11}}{18} =-\frac{\sqrt{11}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*9}=\frac{0+6\sqrt{11}}{18} =\frac{6\sqrt{11}}{18} =\frac{\sqrt{11}}{3} $
| 3x/11=x/5+4 | | -3=2x-5(x+6 | | 5m–4=3(m+2) | | (x+3)^2-3=49 | | -1+14x=185 | | 9(x+10)=25+x | | 28-5x=7x-20 | | -1+14x=151 | | 9(x+10=25+x | | 106=-6x-2(x-13) | | 4x–3=47–x | | -1+14x=91 | | -1+14x=103 | | 4(3x+2)-2=12x+8-2=12x+6 | | .56-5.5x=-1.64 | | u=21-6u | | 7/4p+-10=-38 | | -1+14x=115 | | 33=3w+2(w+4) | | -3x-4(-4x+7)=102 | | (3.99*3)+v=5v+0.11 | | 32-6x=12+4x | | -34=7(x-7)-4x | | -6w+4(w+3)=8 | | 81-3w=6w | | -x-10-9x=-100 | | -123=7x+6(4x-5) | | 32-6x=12x+4x | | 8p+25=97 | | -b+4b-9=3b-18 | | 2x+3=4x+-1 | | 16+14=14+n |