If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+7x=0
a = 9; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·9·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*9}=\frac{-14}{18} =-7/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*9}=\frac{0}{18} =0 $
| 12+7(11-9x)=3-20x | | 4(k+7)-(3k+4)=6 | | 6.4+2.1(6m-2)=8.5 | | 21x-3=13x+1 | | 2n+112=180 | | 2(x-4)=5(4-2)+4x | | 4=-4x^2+4x | | -29=6+2(h-5) | | 2z+40+3z-20=180 | | 2z=40=3z-20=180 | | 4+2(1+3k)=25 | | 8x^2+2=146 | | -31=-5(7c+9) | | 88=b-5 | | -9(5-6v)=-23 | | 6f-7+9f=-26 | | 7/6x-6=8 | | x3-4x2-9x=-36 | | x3-4x2-9x+36=0 | | 6(3z-5)=32+9z | | 6+x/3=-3 | | 2x+1=x+15-10-4x | | 4/5x+2+12/15x+6=0 | | 5x2-15x-90=0 | | 6v+5=-2v-3 | | 2088=29(p+30) | | s/6=5,280 | | 8x=15x= | | 6/s=5,280 | | 5x2-15x=90 | | x+6/3=-3 | | 1848=21(p+15) |