If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+6x-4=0
a = 9; b = 6; c = -4;
Δ = b2-4ac
Δ = 62-4·9·(-4)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{5}}{2*9}=\frac{-6-6\sqrt{5}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{5}}{2*9}=\frac{-6+6\sqrt{5}}{18} $
| -16x^2+98=0 | | -3x+11=4(x-6) | | -7/3x-6/5=7/6x | | 2(j-4)=4 | | 17-x=14x+8 | | 5a^2+a-48=0 | | (r-8.7/3.6)=3.722 | | 2(j−4)=4 | | 4(y-4)-6y=-28 | | 0.15(1000+x)=x | | (f/3)-2=1 | | 3x-4=16x | | 7c+12.5=10.5+11c | | -3v+7=-9v=49 | | x÷65=56 | | 3y+8=102 | | 148+112+x+3x+10=540 | | -5(x+7)+4x=50 | | 4x-5x+2x+3x=28 | | 4(z-83)=64 | | 4x+13=8x-3+4x | | 16c+15=17c | | 19+5w=-13+w | | 3=9+2c | | 2x+x+3x+5=180 | | 16m=14 | | 4x+19=-9-6x= | | 21x×+7=-7×-7 | | -3+3p=-16-10p | | -7q-10=-6q | | 7+2x=2x+15 | | 4×60-8y+4y=60 |