If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+15x=0
a = 9; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·9·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*9}=\frac{-30}{18} =-1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*9}=\frac{0}{18} =0 $
| 5m-5=-10 | | b=1/27 | | 4x+27=-6x-103 | | 2+31/4x=1/2+51/2x | | 7n-32=4n | | 2+314x=12+512x | | -8p-1/5=9p+4 | | 16x^2-114x=-28 | | 19x+4.5=180 | | 1/3x^2+3x-4=(-4 | | 4h/9-19=2¹¹/18 | | 16x^2-114x=28 | | 34=58-8g | | x-(-11)=2 | | 7.6x+7.1=125.84 | | 4h/9-19=2/11/18 | | 4h/9-19=211/18 | | 8x-69=-28 | | 6÷y=9÷33 | | 4x+20=270 | | z^2+11z+36,5=0 | | -3(1+3(x)=14-x14-× | | -4x-20=270 | | 5x+80=12x-11 | | 0.1x+36=180 | | 16x^2-114x-28=0 | | 13y-9y-14=30.84 | | V(x)=x(20-2x)(10-2x)(x) | | -0=16x^2-114x-28 | | 2x+-3=19 | | -4x+20=270 | | 0=16x^2-114x-28 |