If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+-84x-60=0
We add all the numbers together, and all the variables
9x^2-84x=0
a = 9; b = -84; c = 0;
Δ = b2-4ac
Δ = -842-4·9·0
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-84}{2*9}=\frac{0}{18} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+84}{2*9}=\frac{168}{18} =9+1/3 $
| K^2-20k+41=-3 | | -7r+6r=-22 | | -1-3a^=-4 | | 2x(7x-3)(x+5)=0 | | 70+98+66= | | -30=3(8c+6) | | 2x+1/5=6 | | 3+9(1-6d)=-32 | | 2(5z+3)=23 | | x2+(x+7)2=169 | | 18=5v-8v | | -4(9b+3)=-23-6b | | 24=14+2l | | -0.3(n-5)=0.4-0.2(n-7) | | x+1/6=-10/12 | | x1/6=10/12 | | 1/2x-3=5x+6 | | 3x^-x-2=0 | | x+1/6=10/12 | | 1/8x+1/2=-3/2x+7 | | 4k^2+1=-34 | | 4x^2+24x-5=16 | | 5x^2+2=247 | | 4+6x=82 | | B=5c,c= | | 7x+27=4x+6 | | 4+11x=26 | | 3x-11=x+6 | | 6x+9-3x-5=53 | | 3x4+2x=368 | | -16+5n=-7(-68n)+3 | | 250x=75 |