9x/1=3-x/3*81x

Simple and best practice solution for 9x/1=3-x/3*81x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x/1=3-x/3*81x equation:



9x/1=3-x/3*81x
We move all terms to the left:
9x/1-(3-x/3*81x)=0
Domain of the equation: 3*81x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
9x/1-(-x/3*81x+3)=0
We get rid of parentheses
9x/1+x/3*81x-3=0
We calculate fractions
17496x^2/1944x+x/1944x-3=0
We multiply all the terms by the denominator
17496x^2+x-3*1944x=0
Wy multiply elements
17496x^2+x-5832x=0
We add all the numbers together, and all the variables
17496x^2-5831x=0
a = 17496; b = -5831; c = 0;
Δ = b2-4ac
Δ = -58312-4·17496·0
Δ = 34000561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{34000561}=5831$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5831)-5831}{2*17496}=\frac{0}{34992} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5831)+5831}{2*17496}=\frac{11662}{34992} =5831/17496 $

See similar equations:

| 83=10p+23 | | 8s+3=51 | | 3(g+33)=-57 | | 8(u-91)=48 | | 4(h-71)=24 | | 29(k+638)=-290 | | 19(v-981)=-532 | | 24b+101=917 | | 15q+-70=665 | | 11(s-897)=594 | | 8(t+32)=56 | | 12=6(s-87) | | 4d+13=89 | | 5(s+1)=35 | | 100=10(r-86) | | 3(n-3)=24 | | 1-x=12-2x1-x=12-2x | | (r+1)^2+(r+2)^2=65 | | c=-48 | | 9(i+2)=3(-2) | | 1/2x+12=-10 | | 6x(x-2)=140 | | 13^(-4n)=-76 | | 13^-4n=-76 | | 5^(x+2)-5^x=600 | | 8x-1+27=190 | | 8x-1+27=63 | | 17x+21+23=180 | | a-49+a+7+54=180 | | (2x-15)+(2x)+65=180 | | 3w+2w+70=180 | | 3v+31+119=180 |

Equations solver categories