If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x-1=(3x-1)(2x+5)
We move all terms to the left:
9x-1-((3x-1)(2x+5))=0
We multiply parentheses ..
-((+6x^2+15x-2x-5))+9x-1=0
We calculate terms in parentheses: -((+6x^2+15x-2x-5)), so:We add all the numbers together, and all the variables
(+6x^2+15x-2x-5)
We get rid of parentheses
6x^2+15x-2x-5
We add all the numbers together, and all the variables
6x^2+13x-5
Back to the equation:
-(6x^2+13x-5)
9x-(6x^2+13x-5)-1=0
We get rid of parentheses
-6x^2+9x-13x+5-1=0
We add all the numbers together, and all the variables
-6x^2-4x+4=0
a = -6; b = -4; c = +4;
Δ = b2-4ac
Δ = -42-4·(-6)·4
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{7}}{2*-6}=\frac{4-4\sqrt{7}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{7}}{2*-6}=\frac{4+4\sqrt{7}}{-12} $
| 3r=r+6 | | x-1=(x+1) | | x=4/5*7 | | 4x+4x+1=121 | | 4x*2+4x+1=121 | | t/7=-3 | | -27+z=-81 | | 3x+34=2 | | |2x+3|=≤9 | | x2+2=0 | | X=-5^x+5 | | 6-(x-4)=5x-(3x-6) | | 4x+2=6+3 | | 12(3x-6)=-3x | | 6x−2=3x+19 | | 3−5=−4b+1 | | 2x^2*9x=0 | | 4x^2-104x=0 | | 4+3(x+2)=16 | | y=10*3^2-7*3-12 | | 45÷3×5a=75 | | 3x–6=x+2 | | 3×=-45-2x | | 12/18=t/63 | | -7/2y+5/3=-1/5 | | (70-x)+(4x+15)+(2x-5)=180 | | 5-3x=1+5x | | 10x+20=14x-10 | | 0.1a+0.4(17-a)=5 | | x^2+120x-1440=0 | | 9u-6u=24 | | |y+4|=1 |