If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x+3x^2=0
a = 3; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·3·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*3}=\frac{-18}{6} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*3}=\frac{0}{6} =0 $
| 4m-38=-4(6-4m)-2 | | 2(3-x)=3(x+1) | | 5x+3x=2x+18 | | 4-3x=2x+8 | | x-5/3-x+1/6=2x+7/4 | | 12.4=4(3x+1) | | 8(1-5x)=-x+8 | | 4^(x)=3x+1 | | 3/5=y/4 | | f(3)=-3^2-6(3)+4 | | (250)(x^2)-15x-3=0= | | 4x+42=7x | | 3,483,511+53,927=m | | 93,533+125,000=a | | n/4+8=7 | | 25+45=d | | -40-2v=-3(6v+8) | | 2*(x+3)=7+x | | 2·(x+3)=7+x | | x-3/9=x-7/3 | | 0.64k=0.02 | | 24=1.6s | | (x+4)(x^2+4x+3)=28(x+3) | | (r+4)(r^2+4r+3)=28(r+3) | | 12.25=9.8x | | 0.25p=10 | | -6(x+6)=7=-5(x+7) | | (r+4)(r^2+4r+3)=0 | | -2(1-5x)=-8(-2x+2)-7x | | -x^2+1x+9=0 | | (g-1)(3g-1)=(g+1)(g+1) | | 0=-16t^2+520 |