9x+10-7x=5(x-2)8x-5=5(x-4)

Simple and best practice solution for 9x+10-7x=5(x-2)8x-5=5(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9x+10-7x=5(x-2)8x-5=5(x-4) equation:



9x+10-7x=5(x-2)8x-5=5(x-4)
We move all terms to the left:
9x+10-7x-(5(x-2)8x-5)=0
We add all the numbers together, and all the variables
2x-(5(x-2)8x-5)+10=0
We calculate terms in parentheses: -(5(x-2)8x-5), so:
5(x-2)8x-5
We multiply parentheses
40x^2-80x-5
Back to the equation:
-(40x^2-80x-5)
We get rid of parentheses
-40x^2+2x+80x+5+10=0
We add all the numbers together, and all the variables
-40x^2+82x+15=0
a = -40; b = 82; c = +15;
Δ = b2-4ac
Δ = 822-4·(-40)·15
Δ = 9124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9124}=\sqrt{4*2281}=\sqrt{4}*\sqrt{2281}=2\sqrt{2281}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(82)-2\sqrt{2281}}{2*-40}=\frac{-82-2\sqrt{2281}}{-80} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(82)+2\sqrt{2281}}{2*-40}=\frac{-82+2\sqrt{2281}}{-80} $

See similar equations:

| 9x-10=x-9+5x-11 | | 63=-21x | | 5(x-4=15 | | 14x-2+7x+8=174 | | -7j-3j-3j=13 | | -7-h/3=4 | | -4.2=5.6k | | 5x+4x+3=-15 | | 20x+2=35+2 | | −9+4p​ =−5 | | 6v+4v-8v-2v+2v=8 | | c-246=131 | | S=4πr² | | 4x–2=4–2x | | 2(-3x+5)=-9x-17 | | -39=y/3 | | 10x-83-4x=6x | | 5-2n-7n=1-7 | | X/5-x/10=2 | | 4x–2=4–2x. | | 10x=12=82 | | 5r+2r-3=-3r+10r | | 10-2x=-3(4+x) | | 2x-5(x-5)=-6+5x-1 | | 8x=4x+21 | | -2+4v=30 | | -51=g+-80 | | 5x+2(11−4x)=82+xx= | | 9x−10=x−9+5x-11 | | 7b+3b-3b=7 | | 5+5p=4(p+3) | | 17=a-(-9) |

Equations solver categories