If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-30x-44=0
a = 9; b = -30; c = -44;
Δ = b2-4ac
Δ = -302-4·9·(-44)
Δ = 2484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2484}=\sqrt{36*69}=\sqrt{36}*\sqrt{69}=6\sqrt{69}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{69}}{2*9}=\frac{30-6\sqrt{69}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{69}}{2*9}=\frac{30+6\sqrt{69}}{18} $
| 3-m/4=7 | | 3t/4=-19 | | 22x-7=12x+8 | | 3x/6+7=12 | | 22x-7=12x-8 | | 4x+3x-2x-x=0 | | 5x-3+7=2x+13 | | 35-x=3(x+5) | | 3(m+6)=6(m—) | | 1/3+2=1/2x+3 | | 500-5x=350 | | 6x+2x=9.2 | | 2(x-1)-5(x-3)=x+1 | | 17x+6=3x^2/ | | x+x+0.5x+0.25x=300 | | (-8x)/3=16 | | 130=y^2+2y | | 3m=2(m-5) | | X2-4=2x+4 | | 3t/4−5/12=2t/3 | | 4a/3=a/2+2/6 | | 4a3=a2+26 | | −13=9/r+8 | | -2x-9=-1+3+2x | | 1/4x-1/3=2/3+3x+1/4 | | 5b=b/4 | | 5y=y/3 | | Y=x^-4x-4 | | Y=x2-4x-4 | | F(x)=-2x^2+12x+14 | | 0=5x^-8x-2 | | 6(3a+1=168 |