If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9u^2=49
We move all terms to the left:
9u^2-(49)=0
a = 9; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·9·(-49)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*9}=\frac{-42}{18} =-2+1/3 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*9}=\frac{42}{18} =2+1/3 $
| x2+11=0 | | y+20y=18 | | -19x+8=7x-13 | | 81t2+51=87 | | x^2-3x=65 | | 3.36=b+5.12 | | 15k+9.5=k+13 | | 5t^2-33t-56=0 | | 3.36=b+5.12= | | w2=64 | | 0.9(x+1.4)-2.3+0.1x=5 | | -33t+5t^2-56=0 | | y4−20y2+64=0 | | x+(x+70)=90 | | -1/3x+4=-4x+12 | | 15-10x=5x | | k2–25=0 | | -21x^2+44x-15=0 | | -4p+35=-3(6p+7) | | 5f2=45 | | (8x-35)=(5x+2) | | 2(x)-26=18(x) | | 2x^2-1=x^2+4x+11 | | -27=n-12 | | 2n^2+3n-65=0 | | 5x-15=3/2 | | (8x-34)=(5x-2) | | 5(x)26=18(x) | | 2n+3n-65=0 | | j2+10=0 | | w2=-42 | | 3×+4+5x-2=10 |