If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9n^2-27n+20=0
a = 9; b = -27; c = +20;
Δ = b2-4ac
Δ = -272-4·9·20
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-3}{2*9}=\frac{24}{18} =1+1/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+3}{2*9}=\frac{30}{18} =1+2/3 $
| (x-6)^2=40 | | -3(x-12)=21 | | 9x-4-4x=31 | | w-5/7=8 | | w/7-5=8 | | -3x-14=-2 | | 5+4(x-1)-2x=5(x-2) | | (X+5)^2+(y-5)^2=25 | | H(t)=80-5*t^2 | | 80=80-5*t^2 | | -x+4=3x=4 | | 4(x+1)+2=-2+2(x-6) | | 11y-60=9y-16 | | (4-x)^2*2=x^2 | | 2/5x=3=9 | | 4(2x+3)+2(x-4)=10 | | 14=24m | | (m^2)-5m+2=0 | | -4a+7-45=1+a | | 2x.7=36 | | 5=385-8n | | x^2-8x+2(x^2-8x)^0.5-(15)=0 | | 1200+.3x=0 | | x^2-8x+2(x^2-8x)^0.5=15 | | 6x-3=4x33 | | 6y+10=-2 | | x2+7x=5x-3 | | 15x-3x-10=3x+8 | | 6(2x-2)=-6(7x+2) | | 87.3=9(m+2.9) | | 7y-13+2y=2+4y-10 | | 7p+4=−p+9+2p+3p |