9m+15-2=29/4m+1

Simple and best practice solution for 9m+15-2=29/4m+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9m+15-2=29/4m+1 equation:



9m+15-2=29/4m+1
We move all terms to the left:
9m+15-2-(29/4m+1)=0
Domain of the equation: 4m+1)!=0
m∈R
We add all the numbers together, and all the variables
9m-(29/4m+1)+13=0
We get rid of parentheses
9m-29/4m-1+13=0
We multiply all the terms by the denominator
9m*4m-1*4m+13*4m-29=0
Wy multiply elements
36m^2-4m+52m-29=0
We add all the numbers together, and all the variables
36m^2+48m-29=0
a = 36; b = 48; c = -29;
Δ = b2-4ac
Δ = 482-4·36·(-29)
Δ = 6480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6480}=\sqrt{1296*5}=\sqrt{1296}*\sqrt{5}=36\sqrt{5}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-36\sqrt{5}}{2*36}=\frac{-48-36\sqrt{5}}{72} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+36\sqrt{5}}{2*36}=\frac{-48+36\sqrt{5}}{72} $

See similar equations:

| 5x-2=(-7) | | -10-n=n-6-6n | | 5(x-2)=8x-11 | | -4z/3=10 | | 9=2x^-5 | | 8y+5=-9+2 | | 8–=10x+6 | | 0.18(12)+0.03x=0.06(12+x | | -4p+11=-7p-16-3 | | 6x-14=12-8x | | -18g+9=-19-20g | | 148.86=34.99+0.59y | | |10+6r|=70 | | 9x+4-x=5x+6 | | -2f=-3f-13 | | -2f=-3f−13 | | -(2y)/6=18(6)=15(2) | | 5-7h+9h=-7-h | | 1=k12+51=k12+5 | | 8+6m=9m-7 | | -7t-5=-6t | | 3x/2+16=10 | | 16(3x-3)=4(12x+2 | | -15(x-1)=-4x | | 8g+3=7g+6 | | 5x+4x+5x+4x=360 | | x+3/8=40/16 | | -x-43=10.7 | | 7-x=6+3x | | 3s=-66 | | 8(x+2)=2x=16 | | -4w+5=11 |

Equations solver categories