If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2-6k-8=0
a = 9; b = -6; c = -8;
Δ = b2-4ac
Δ = -62-4·9·(-8)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-18}{2*9}=\frac{-12}{18} =-2/3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+18}{2*9}=\frac{24}{18} =1+1/3 $
| 4x+6x=2020 | | 4x(2x-8)=(4x-5)-15 | | 100=6(1/3d+1) | | (2q-6)/5=-4 | | 5(2-3x)+4x=-4(x+1) | | 5-8x^2=0 | | ?052x−x2=40 | | 8(x+8)=10x+(-4) | | -7-4n-1=7+7n | | x=1428 | | x/4-6=26 | | (3/5)x-15=30 | | 2.4(2–x)–0.6(4x–3)=0 | | 3x-2x²+10=0 | | w/11=5 | | 3x^2+9x+8=2 | | 9=(x-4)²-9 | | 45x=360x= | | 3x^2+9x+8=20 | | 10x-4x+132=10+80 | | 12-x=96 | | 2(3x+6)=3(3x-2 | | 1=11-z | | 4(x+25)=40+2x–8x | | -7x+6+2x-4=3x-6+1+x | | 5(x+4)=7x+8 | | 246/x=-41 | | 5*2x=2x+6 | | (0.63)=(x/0.05) | | 5y2(5y3)=25y5 | | x/19.1=(30.28-x)/30.28 | | (x/19.1)=(30.28-x)/30.28 |