If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2+4k-80=0
a = 9; b = 4; c = -80;
Δ = b2-4ac
Δ = 42-4·9·(-80)
Δ = 2896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2896}=\sqrt{16*181}=\sqrt{16}*\sqrt{181}=4\sqrt{181}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{181}}{2*9}=\frac{-4-4\sqrt{181}}{18} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{181}}{2*9}=\frac{-4+4\sqrt{181}}{18} $
| 8(3x–4)=88 | | -4u-3=5 | | -u/3=-25 | | 3x-3+5=2x+10 | | y=-4(2+y)+2 | | 2(3x–4)=10 | | 5x-5=7x+8 | | 3(2x–4)=18 | | (X-2)(x-3)=24 | | 19x-50=180 | | 30000x=-0.5x^2+400x-400x | | 2n+4.26=17.04 | | F(x)=900+0,15x | | 5x+25/50=2 | | -24=-4/5w | | 2x+4(3x+1)=9 | | 3/10x+7=4/5x | | -2v/9=12 | | 0=-16t^2+15t-5 | | 0.2(x-12)=-6 | | 248=128-y | | 3y+5=2-4y | | -5/4w=25 | | 2/9x=1/8 | | 5/u+8=4 | | 2a+1=-3a-9 | | 16x^2-240x+23=0 | | -6=-2/5w | | 2(10^x)=6 | | (x-1)x=272 | | 2(4u+3)=6 | | 8y+1=3y-9 |