If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9f=(1/2)(12f-2)
We move all terms to the left:
9f-((1/2)(12f-2))=0
Domain of the equation: 2)(12f-2))!=0We add all the numbers together, and all the variables
f∈R
9f-((+1/2)(12f-2))=0
We multiply parentheses ..
-((+12f^2+1/2*-2))+9f=0
We multiply all the terms by the denominator
-((+12f^2+1+9f*2*-2))=0
We calculate terms in parentheses: -((+12f^2+1+9f*2*-2)), so:We get rid of parentheses
(+12f^2+1+9f*2*-2)
We get rid of parentheses
12f^2+9f*2*+1-2
We add all the numbers together, and all the variables
12f^2+9f*2*-1
Wy multiply elements
12f^2+18f^2-1
We add all the numbers together, and all the variables
30f^2-1
Back to the equation:
-(30f^2-1)
-30f^2+1=0
a = -30; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-30)·1
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*-30}=\frac{0-2\sqrt{30}}{-60} =-\frac{2\sqrt{30}}{-60} =-\frac{\sqrt{30}}{-30} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*-30}=\frac{0+2\sqrt{30}}{-60} =\frac{2\sqrt{30}}{-60} =\frac{\sqrt{30}}{-30} $
| 8x-16=30 | | 50=1/2n+26 | | -7=4/u+3 | | 50-25=5a | | X+20+3x=(-27)(3×)(-30) | | 134x+(-100)=112 | | 3(m−5)+1=2(m+1)−9 | | 1/2t=2/3t+4 | | x^-2/3=25/16 | | (7+x)*122/2=264 | | 5r-9=3(r-7) | | 99.96=6.8×x | | 11b=3(10+9b) | | X+20+3×=-27-3x-30 | | 20-y=1.5×y | | (x+2)+x=38 | | 3x2-x-4=0 | | 10=2(2x-3) | | 3.8×g=104.12 | | 9=27x+5 | | x+7=2x-23 | | (x+1)^2=2 | | 3/x+3/2x=2 | | -2x^2+22x-24=0 | | x-2+13=(x-7)3 | | 1/6x-2=0 | | 4x^2-33+8=0 | | 4.3×p=15.72 | | 1÷4(d-5)=1 | | D=1/2n+26 | | 4/5x-3/4x=5 | | -2-6x=0 |