If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9d^2-16=0
a = 9; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·9·(-16)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*9}=\frac{-24}{18} =-1+1/3 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*9}=\frac{24}{18} =1+1/3 $
| (4y-24)+(2y+8)=180 | | 6(5-8v)+1=-54 | | 3x+0=-4 | | 4(x+8)+5=4x+7 | | -10=10t | | 37x+17=6(6x+4) | | 7v•4= | | 35+7x=217 | | (180-x)-(x)=42 | | 62+2x-3=180 | | x=(40-5x)/(15) | | 8y=2-4 | | (1)/(2)|10x+2|-7=17 | | 2x+55=63 | | -1/3(6b-12)=4+2b+4 | | 6x^2−70=2 | | 2c-3=3c+3 | | 2a+7=-5 | | -3=12y-5(2-7) | | 6b-6=4b-16 | | 13^(5+7x)=2^(x) | | 13^(5+7x)=2^9x) | | (3x)^2+2x-10=0 | | 3=5+x/12 | | 5–x=x+9 | | 4.6+3x=18 | | 5n+1+7=-17 | | 2x-14=3x-3 | | 2z-4=4z-16 | | 2y+5=3y+9 | | -3(w-8)=9w=12 | | (2x)+(3x-1)=24 |