9=(7+2x)(5+2x)

Simple and best practice solution for 9=(7+2x)(5+2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9=(7+2x)(5+2x) equation:



9=(7+2x)(5+2x)
We move all terms to the left:
9-((7+2x)(5+2x))=0
We add all the numbers together, and all the variables
-((2x+7)(2x+5))+9=0
We multiply parentheses ..
-((+4x^2+10x+14x+35))+9=0
We calculate terms in parentheses: -((+4x^2+10x+14x+35)), so:
(+4x^2+10x+14x+35)
We get rid of parentheses
4x^2+10x+14x+35
We add all the numbers together, and all the variables
4x^2+24x+35
Back to the equation:
-(4x^2+24x+35)
We get rid of parentheses
-4x^2-24x-35+9=0
We add all the numbers together, and all the variables
-4x^2-24x-26=0
a = -4; b = -24; c = -26;
Δ = b2-4ac
Δ = -242-4·(-4)·(-26)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{10}}{2*-4}=\frac{24-4\sqrt{10}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{10}}{2*-4}=\frac{24+4\sqrt{10}}{-8} $

See similar equations:

| 10+5(9n-9)=55 | | 7(3-3m)=105 | | 3(2x-5)+4=7 | | 5x+7=42 | | -33=5x-3(5x+31) | | 4r+2-5r-12=125 | | 2m=24+4 | | x3−4=−9 | | 4(4x+1)=3+12x-5 | | 4x-9=15 | | 7=3(m-1)=28 | | a+6=9−5a | | 2(4x+6)+8=11x-7 | | 30+25x=-30-5x | | (3x+25)=(5x−7) | | 8(h-1)=6h+4-h | | 4x+5x-52=26-4x | | x÷4+3=7 | | 6x-3(3x+4)=2(x-7)4 | | 8x+2=42 | | 3(k-6)=80 | | 41=8n+9 | | 60+x=140 | | 34=a-27 | | 2x-2=3x-3-30-10x | | 1/2/5=x/10 | | 69+1+5x=180 | | 18-3x=45 | | 4r+25r-12=125 | | 2c–10=6+8c | | 4x+5x-52=52-4x | | (3x-3)+(x-12)=180 |

Equations solver categories