936=(2x-4)(x+3)

Simple and best practice solution for 936=(2x-4)(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 936=(2x-4)(x+3) equation:



936=(2x-4)(x+3)
We move all terms to the left:
936-((2x-4)(x+3))=0
We multiply parentheses ..
-((+2x^2+6x-4x-12))+936=0
We calculate terms in parentheses: -((+2x^2+6x-4x-12)), so:
(+2x^2+6x-4x-12)
We get rid of parentheses
2x^2+6x-4x-12
We add all the numbers together, and all the variables
2x^2+2x-12
Back to the equation:
-(2x^2+2x-12)
We get rid of parentheses
-2x^2-2x+12+936=0
We add all the numbers together, and all the variables
-2x^2-2x+948=0
a = -2; b = -2; c = +948;
Δ = b2-4ac
Δ = -22-4·(-2)·948
Δ = 7588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7588}=\sqrt{4*1897}=\sqrt{4}*\sqrt{1897}=2\sqrt{1897}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{1897}}{2*-2}=\frac{2-2\sqrt{1897}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{1897}}{2*-2}=\frac{2+2\sqrt{1897}}{-4} $

See similar equations:

| x÷9=-108 | | 4(5y+3)-5(3y+1)=3 | | 52x+11=8.50+64 | | –16=s2–15 | | p=2(21/2)+2(32/5) | | 5(v+2)-8v=16 | | 3(c−13)=−15 | | y=1.75 | | k/5+2=14 | | k5+2=14 | | x/55=8/11 | | n/2=-46 | | 83-x=203 | | y+10=3y+10 | | 10=m+85 | | -14x=-5.9 | | 85=8y | | x+45+6=180 | | 5x+6x-2=7x+22 | | 3+x÷6=1-3(4-7) | | w-28=12 | | 2x+2x-1=24 | | (18+6x)/3=3x | | 39=47-y | | w+24=31 | | p+10p=0 | | a+15=82 | | 7x+11=15x+11 | | 3x-15=2x+22 | | y-37=43 | | 12c−20=2c+20 | | 4u-16=60 |

Equations solver categories