92=(3z+3)(4z+1)

Simple and best practice solution for 92=(3z+3)(4z+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 92=(3z+3)(4z+1) equation:



92=(3z+3)(4z+1)
We move all terms to the left:
92-((3z+3)(4z+1))=0
We multiply parentheses ..
-((+12z^2+3z+12z+3))+92=0
We calculate terms in parentheses: -((+12z^2+3z+12z+3)), so:
(+12z^2+3z+12z+3)
We get rid of parentheses
12z^2+3z+12z+3
We add all the numbers together, and all the variables
12z^2+15z+3
Back to the equation:
-(12z^2+15z+3)
We get rid of parentheses
-12z^2-15z-3+92=0
We add all the numbers together, and all the variables
-12z^2-15z+89=0
a = -12; b = -15; c = +89;
Δ = b2-4ac
Δ = -152-4·(-12)·89
Δ = 4497
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{4497}}{2*-12}=\frac{15-\sqrt{4497}}{-24} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{4497}}{2*-12}=\frac{15+\sqrt{4497}}{-24} $

See similar equations:

| 6x-2-4x=-10 | | 27x^2=127 | | X^3-10x^2-20x+110=0 | | 7x-2=2x-22 | | w/8=20.48 | | x2-2=18 | | 3+0.5x=0.8x | | 4b/3=-9 | | 1+9=(14-8m) | | 21-7v+v-14=0 | | -5x-5(x-8)=90 | | 5x2−6=2x−76 | | 2x-15=3x-12 | | 4x=30-5 | | 2r^2-75r-1008=0 | | 2x-12-3=3x-12 | | 7x=5-(2x+3) | | (2x-2)/6-1/2=x/2-2 | | -10m=-130 | | -3(3x+2)=-15 | | v+14=25 | | 7-2x=6-x | | 4s+3s=17 | | 4x-(2x+5)=25 | | 6m=102 | | 2b-(-7)=-21 | | 12x-15=3x-12 | | 4+2(x+1)=6x+2 | | 1/4x-11=50 | | .2x=488 | | 63=17w-8w | | (x−3)(x+5)=1 |

Equations solver categories