If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90=(6x+14)(3x+29)
We move all terms to the left:
90-((6x+14)(3x+29))=0
We multiply parentheses ..
-((+18x^2+174x+42x+406))+90=0
We calculate terms in parentheses: -((+18x^2+174x+42x+406)), so:We get rid of parentheses
(+18x^2+174x+42x+406)
We get rid of parentheses
18x^2+174x+42x+406
We add all the numbers together, and all the variables
18x^2+216x+406
Back to the equation:
-(18x^2+216x+406)
-18x^2-216x-406+90=0
We add all the numbers together, and all the variables
-18x^2-216x-316=0
a = -18; b = -216; c = -316;
Δ = b2-4ac
Δ = -2162-4·(-18)·(-316)
Δ = 23904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23904}=\sqrt{144*166}=\sqrt{144}*\sqrt{166}=12\sqrt{166}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-216)-12\sqrt{166}}{2*-18}=\frac{216-12\sqrt{166}}{-36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-216)+12\sqrt{166}}{2*-18}=\frac{216+12\sqrt{166}}{-36} $
| 5-0.1s=5.5 | | X+32=7x+32-3x | | -4f+f=-3f | | 2.1=-0.6m2.1=−0.6m. | | 19f+12+6=18-6f | | 3(7+3x)=44 | | (4x+10)+6x=180 | | 14=10x−6 | | 18y-28-30y=-412 | | 3n-6;n=4 | | 17x+14+4x-2=369 | | x-20+x+40=180 | | 9x-7+4x+2=47 | | 54y-36=36y+9 | | (5n(n+9))-3=24 | | 4x+9=16–3x | | 229=178-y | | 10(-8+x)=-10 | | 48=4w+8 | | -9.3w=-10.6w-14.95 | | (5y+5)=(7y-9) | | 63=9b+24 | | 3x+2(4x-11)=11 | | 5x+6-3x=2 | | 2x-32=x+28 | | 17-262=-7(5+5x) | | 2+13j=17j-18 | | X/4=4+2x/3 | | -27t-162=18t+198 | | 10(-8+x)=x10 | | -5g=14-4g | | 30=2-a |