If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90-50(40)4x^2=80
We move all terms to the left:
90-50(40)4x^2-(80)=0
We add all the numbers together, and all the variables
-50404x^2+10=0
a = -50404; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-50404)·10
Δ = 2016160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2016160}=\sqrt{16*126010}=\sqrt{16}*\sqrt{126010}=4\sqrt{126010}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{126010}}{2*-50404}=\frac{0-4\sqrt{126010}}{-100808} =-\frac{4\sqrt{126010}}{-100808} =-\frac{\sqrt{126010}}{-25202} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{126010}}{2*-50404}=\frac{0+4\sqrt{126010}}{-100808} =\frac{4\sqrt{126010}}{-100808} =\frac{\sqrt{126010}}{-25202} $
| (7x+2)°+38=180 | | 5y-80=13y+3 | | Y=-3÷2x+6 | | 3x+2=+8 | | -2(2x+5)=4x-(-x+1) | | 8+3h=28 | | 16z^2-24z+9=0 | | -8=-8(x+3) | | x-2/7=x+1/6 | | -6(r+6)=2(-7+7r)-2 | | 7y+21-5y=5y=7+y | | (4-m)/m+11=2/3m | | 2m=26.8 | | 12=-2(x-6) | | 52=8+5k | | 90-50=2x | | 2m=48.6 | | -2/9v=-6 | | x/19=1.5 | | 8k-3=48 | | -8+y/5=-2 | | 21+3=y+3 | | 8(-5+2n)=6(-5+n) | | 4-m/m+11=2/3m | | 6x-12=7x+7 | | 16=3(u+2)-8u | | 54y-11=19.8 | | 360=(9x+1)+(5x+12)+(10x-37) | | –4m2+44m+16=0 | | 8-7(1+x)=-7x-(-x+1) | | 14*(10-x)=42 | | h-145=468 |