If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90+b+3/2b+(b+45)+(2b-90)=530
We move all terms to the left:
90+b+3/2b+(b+45)+(2b-90)-(530)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+3/2b+(b+45)+(2b-90)-440=0
We get rid of parentheses
b+3/2b+b+2b+45-90-440=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-440*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-880b+3=0
We add all the numbers together, and all the variables
8b^2-970b+3=0
a = 8; b = -970; c = +3;
Δ = b2-4ac
Δ = -9702-4·8·3
Δ = 940804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{940804}=\sqrt{4*235201}=\sqrt{4}*\sqrt{235201}=2\sqrt{235201}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-970)-2\sqrt{235201}}{2*8}=\frac{970-2\sqrt{235201}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-970)+2\sqrt{235201}}{2*8}=\frac{970+2\sqrt{235201}}{16} $
| 5x+7+8x=200 | | 5(3x)=3(x-1) | | -4x+5=-6(4x-5)-5x | | -3(x+5=6-3(2x+4) | | 4y2+16=0 | | 6y–10=4y+14 | | 4*(5-x)=12 | | 1/x-2/x-4=3/x^2-4 | | 13/52x=117 | | 1/9(2m-16=1/3(2m+4) | | 12x+10x=180 | | 2y^2-20=0 | | .2x-5.7=3.9 | | 5(3+x)=6(7-x) | | 4x5-x=12 | | 3=5x-38 | | 4x+7x-2x-5=40 | | 12d+6=240-45d | | 4.8+10m=7.76 | | p-0.2p=28.76 | | 0=64t+16t^2 | | 4x3+6x2+18x+5=0 | | 2(3x+5)=-49+5 | | 6x+13x-16+7x+12=360 | | H=192t-16t^2 | | 11+19=-3(9x-10) | | -14+42=-4(x+4) | | (2x-2)^2=54 | | (x-2)^2-(81)=0 | | 2x^+4x-9=0 | | 4(x+)+4=32 | | 4x+8+4x+4=180 |