90+(2b-90)+3/2b+b=540

Simple and best practice solution for 90+(2b-90)+3/2b+b=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 90+(2b-90)+3/2b+b=540 equation:



90+(2b-90)+3/2b+b=540
We move all terms to the left:
90+(2b-90)+3/2b+b-(540)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
b+(2b-90)+3/2b-450=0
We get rid of parentheses
b+2b+3/2b-90-450=0
We multiply all the terms by the denominator
b*2b+2b*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2-180b-900b+3=0
We add all the numbers together, and all the variables
6b^2-1080b+3=0
a = 6; b = -1080; c = +3;
Δ = b2-4ac
Δ = -10802-4·6·3
Δ = 1166328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1166328}=\sqrt{36*32398}=\sqrt{36}*\sqrt{32398}=6\sqrt{32398}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1080)-6\sqrt{32398}}{2*6}=\frac{1080-6\sqrt{32398}}{12} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1080)+6\sqrt{32398}}{2*6}=\frac{1080+6\sqrt{32398}}{12} $

See similar equations:

| f-8=-2f | | 2|2x+7|-9=17 | | 6(4x+5)=-162 | | -14=x-5+8× | | 8-2x+6x=0 | | X+3/2(x/4-13/4)=2 | | -14+3n=n+2 | | 18x+72=16 | | 3+6a=8+5a | | -6=2(x-3)=1 | | 1.34g-7=0.34 | | -40/9=v-20/9 | | 4y=38-1}{2}(4y+16) | | 4x-12-2=-10 | | 6.50=c+(3/4) | | 4x^2-5=31 | | 6.50=c+3/4 | | 8x-3-5x-5=7 | | x+x+2x-10=120 | | |6-5x|=1 | | 15-1y+17=40 | | -4(x15)=-2x-10 | | 5(-3x+6)=90 | | 7×x+3=6x | | -3x+3=2x+4 | | -40/63=v-20/7 | | 4x+12-2-6x-8=5x+10-3x=3 | | 1x/8=-3 | | 1x/8=1 | | 7w+28=8 | | -(2u-4)=8 | | 71(t/60)=60(t+11/60) |

Equations solver categories