90+(2b-90)+3/2b+(b+45)+b=450

Simple and best practice solution for 90+(2b-90)+3/2b+(b+45)+b=450 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 90+(2b-90)+3/2b+(b+45)+b=450 equation:



90+(2b-90)+3/2b+(b+45)+b=450
We move all terms to the left:
90+(2b-90)+3/2b+(b+45)+b-(450)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
b+(2b-90)+3/2b+(b+45)-360=0
We get rid of parentheses
b+2b+3/2b+b-90+45-360=0
We multiply all the terms by the denominator
b*2b+2b*2b+b*2b-90*2b+45*2b-360*2b+3=0
Wy multiply elements
2b^2+4b^2+2b^2-180b+90b-720b+3=0
We add all the numbers together, and all the variables
8b^2-810b+3=0
a = 8; b = -810; c = +3;
Δ = b2-4ac
Δ = -8102-4·8·3
Δ = 656004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{656004}=\sqrt{4*164001}=\sqrt{4}*\sqrt{164001}=2\sqrt{164001}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-810)-2\sqrt{164001}}{2*8}=\frac{810-2\sqrt{164001}}{16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-810)+2\sqrt{164001}}{2*8}=\frac{810+2\sqrt{164001}}{16} $

See similar equations:

| x=-1/4=-1/3 | | -7x+4x-2x=0 | | a2+5a−20=30 | | -0.3+x=4.7 | | r2+8r+17=0 | | 4s=12×7 | | (5n+3)=10n+5 | | 4x^2+41x-100=0 | | 94/100=x/60 | | (x+64)+(x-11)=180 | | 2=2b-4 | | 7.2x+4.8=4.1x-7.6 | | 6x-5)-x=-2(x+1)3131 | | 2x+3x+4x=6=75 | | 54/x^2=x2 | | 12.5=x/2 | | 21.4+4y=8y+11 | | -5+5r=15 | | (7x+1)+(18+4)=180 | | 5x-17=6x-10 | | 13.38m+10=13.88-20 | | 61/11=x+5 | | 1.4x+9=7x | | x9=18 | | )2x–9=6–x | | 121x/2=8/x | | 17x=1356 | | 22x-33=10x=10+5 | | 3(2x+6)=-44+50 | | 27m+22.75=52m+16.50 | | 3(m/2+5)=33 | | m2=34˚ |

Equations solver categories