If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90(2x+15)x=180
We move all terms to the left:
90(2x+15)x-(180)=0
We multiply parentheses
180x^2+1350x-180=0
a = 180; b = 1350; c = -180;
Δ = b2-4ac
Δ = 13502-4·180·(-180)
Δ = 1952100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1952100}=\sqrt{8100*241}=\sqrt{8100}*\sqrt{241}=90\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1350)-90\sqrt{241}}{2*180}=\frac{-1350-90\sqrt{241}}{360} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1350)+90\sqrt{241}}{2*180}=\frac{-1350+90\sqrt{241}}{360} $
| 12^2-84x+147=0 | | 6(8x+28)=-294 | | 2p-40=p+5 | | 5x+11=-3x-21 | | 21+8x-2=12x-1 | | -2(x-3)=-(-x+1) | | 6u-28=2u | | b-5.2=0.94 | | 5r/7=10 | | i-4.7=3.5 | | 3c-15=5c-41 | | 212=16+p | | y-9.3=0.12 | | 1=-2m+7 | | -10x-21=41-12x | | 8(3a+7)=-40+8a | | 2v-84=v-31 | | X=7=3x+9 | | 2=1.47x-x | | 2x^2+5=22 | | 39x-3=270 | | 5=3-s | | 7x-3=4+x | | z-3.6=1.52 | | 5x+11=-3x+20 | | -14x-5=−14x−5 | | k+6=-4k-9 | | 2+x/x=1.47 | | a+93+2a=180 | | s-3.9=0.56 | | (1-v)(2v+5)=0 | | (6y*2)=-5*6y-6+174 |