9/x-2=8/2x+1

Simple and best practice solution for 9/x-2=8/2x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9/x-2=8/2x+1 equation:



9/x-2=8/2x+1
We move all terms to the left:
9/x-2-(8/2x+1)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 2x+1)!=0
x∈R
We get rid of parentheses
9/x-8/2x-1-2=0
We calculate fractions
18x/2x^2+(-8x)/2x^2-1-2=0
We add all the numbers together, and all the variables
18x/2x^2+(-8x)/2x^2-3=0
We multiply all the terms by the denominator
18x+(-8x)-3*2x^2=0
Wy multiply elements
-6x^2+18x+(-8x)=0
We get rid of parentheses
-6x^2+18x-8x=0
We add all the numbers together, and all the variables
-6x^2+10x=0
a = -6; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·(-6)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*-6}=\frac{-20}{-12} =1+2/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*-6}=\frac{0}{-12} =0 $

See similar equations:

| -43=5-8x | | -6(4x+1+7x+9(x-3)=4 | | a2-144=0 | | 4–8t=-9t | | 6u-8=26 | | 3(t+8)=48 | | 8r=5+9r | | y=54-5y | | 5m=4+4m | | 0+x=9-2x | | 3(2x-3)-15=2(2x+1) | | 3w-1=6W-10 | | 10-3x+4=11 | | y/5-3=18 | | 4x/6x-3/(2x+1/2x-1-2x-1/2x+1)=2x+1/6 | | -15b+-40=45 | | -15b+-40=40 | | 5x/12+5x/4=20 | | 8-x=4(x+1) | | -6x+5-4(x-1)=-(5x-4)-4x+4 | | 11x^2-8x=16 | | 5x+5=3x+2$ | | 2(6)-4x=-12 | | 105+2x=130+3x | | c+2c–2=10 | | 2b^2+6b=10 | | .05x+.5=1.5x | | 4.444+4x=4.111+6x | | n^2+5=16 | | 6d-54=-12 | | 2k^2+1=183 | | 5(x+2)-3(x+4)=2x-2 |

Equations solver categories