9/x+1-3/2=2/3x+3

Simple and best practice solution for 9/x+1-3/2=2/3x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9/x+1-3/2=2/3x+3 equation:



9/x+1-3/2=2/3x+3
We move all terms to the left:
9/x+1-3/2-(2/3x+3)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 3x+3)!=0
x∈R
We get rid of parentheses
9/x-2/3x-3+1-3/2=0
We calculate fractions
(-27x^2)/12x^2+108x/12x^2+(-8x)/12x^2-3+1=0
We add all the numbers together, and all the variables
(-27x^2)/12x^2+108x/12x^2+(-8x)/12x^2-2=0
We multiply all the terms by the denominator
(-27x^2)+108x+(-8x)-2*12x^2=0
Wy multiply elements
(-27x^2)-24x^2+108x+(-8x)=0
We get rid of parentheses
-27x^2-24x^2+108x-8x=0
We add all the numbers together, and all the variables
-51x^2+100x=0
a = -51; b = 100; c = 0;
Δ = b2-4ac
Δ = 1002-4·(-51)·0
Δ = 10000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{10000}=100$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-100}{2*-51}=\frac{-200}{-102} =1+49/51 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+100}{2*-51}=\frac{0}{-102} =0 $

See similar equations:

| 9x+24=109 | | 2x^2-2=122 | | (i-3)^(2)=8-6i | | i-3)^(2)=8-6i | | 5(3-2x)=4(3x+8)-3 | | x=0.05x^2-0.004x+0.00008 | | 4x-7-2x=15-9x | | 29+12+x=89 | | 3^2x-3=39 | | 24x+480=0.3x | | 399=(18+2x)(7.5) | | 4(2z-3)+3=2(z+3)-3(z+1) | | 24=1/5d | | 17/4=11/8j | | 1/6=7g | | 4/5f=44 | | 2349+35.25x=0+75.75x | | 2349+35.25x=1+75.75x | | 1636+33.5x=1900+25.25x | | 4*3t+8=16t | | 3f-4=2f+3 | | 61d=4 | | (5.3)m=7 | | -65-5/14=x | | X=6+2.5y | | Y=1.9(5/2)^x-4 | | g+4=73/4 | | 21-8a=1+6(4-5a) | | -65=14x+5 | | X-(-2y)=9 | | 2y+18/25=5y-39/35 | | 4x+6.03=2.7x |

Equations solver categories