9/7x+7-3/x+1+3/7=0

Simple and best practice solution for 9/7x+7-3/x+1+3/7=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9/7x+7-3/x+1+3/7=0 equation:



9/7x+7-3/x+1+3/7=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: x!=0
x∈R
We add all the numbers together, and all the variables
9/7x-3/x+8+3/7=0
We calculate fractions
9x/343x^2+(-1029x)/343x^2+3x/343x^2+8=0
We multiply all the terms by the denominator
9x+(-1029x)+3x+8*343x^2=0
We add all the numbers together, and all the variables
12x+(-1029x)+8*343x^2=0
Wy multiply elements
2744x^2+12x+(-1029x)=0
We get rid of parentheses
2744x^2+12x-1029x=0
We add all the numbers together, and all the variables
2744x^2-1017x=0
a = 2744; b = -1017; c = 0;
Δ = b2-4ac
Δ = -10172-4·2744·0
Δ = 1034289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1034289}=1017$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1017)-1017}{2*2744}=\frac{0}{5488} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1017)+1017}{2*2744}=\frac{2034}{5488} =1017/2744 $

See similar equations:

| 7/10x=8 | | -7-2j=-j | | –7−2j=–j | | 10y=3+9y | | -9z+13=31 | | (15-3m)+4m=0 | | 15-3m+4=0 | | 130=1/2x(10+3) | | 4b^2−5b−4=0 | | 6=1/2x(3+3) | | 10k-9=41 | | (33/3x-2)=5.5 | | 2f+9=33 | | 6-4n=-4n+7 | | 9/7x+7=3/x+1-3/7 | | –7k+3=–6k | | 2/5w+10=2/5(w+5)+8 | | 7.4=b/8 | | k^2+16k+25=6k | | 2/5w+10=(w+5)+8 | | 0.5x1=2 | | 2b=4(21)+15 | | 4a+15+5a-24=180 | | 2x^2-3x-8=3x-4 | | 2x^2-3x+2=3x-4 | | 3x-12=34x-12 | | 3x^2+7x=2x^2 | | 7n-28=60 | | b^2-8=-4 | | 5+d*2=14 | | |4p-3|=8 | | Q=60=4p |

Equations solver categories