If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9/4k+9/5=2+3/7k
We move all terms to the left:
9/4k+9/5-(2+3/7k)=0
Domain of the equation: 4k!=0
k!=0/4
k!=0
k∈R
Domain of the equation: 7k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
9/4k-(3/7k+2)+9/5=0
We get rid of parentheses
9/4k-3/7k-2+9/5=0
We calculate fractions
1764k^2/700k^2+1575k/700k^2+(-300k)/700k^2-2=0
We multiply all the terms by the denominator
1764k^2+1575k+(-300k)-2*700k^2=0
Wy multiply elements
1764k^2-1400k^2+1575k+(-300k)=0
We get rid of parentheses
1764k^2-1400k^2+1575k-300k=0
We add all the numbers together, and all the variables
364k^2+1275k=0
a = 364; b = 1275; c = 0;
Δ = b2-4ac
Δ = 12752-4·364·0
Δ = 1625625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1625625}=1275$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1275)-1275}{2*364}=\frac{-2550}{728} =-3+183/364 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1275)+1275}{2*364}=\frac{0}{728} =0 $
| 10z/2 −36=6−3z /2 | | −5−(15x−1)=2(7x−16)−x | | X=1/1-0.8x | | x/4+1=1/2+x/6 | | A=(w | | p-1/4*3/1=-5/6 | | X-2-3x=-4x-6 | | 10x+2=2(4x+1)-x+8 | | 6x+16=8x-20 | | 2y=4y=5y-2 | | y=1/5(-20) | | (5-x)/(6)+(5)/(6)=(x)/(54) | | 8/6x-136=5x | | 2/x=(6/5x)+4 | | 4(6/5x)=2/x | | 6x-(5x+5)=8x-12 | | 10=3p+5÷2 | | 10=3p+5÷ | | 4u+6=24 | | x^2+x=3.2/4.4 | | C(x)=50.05-0.06x | | 4x-3=-5(5x-8)+44 | | 3s=8=110 | | -x(6-2x)=7 | | 12y-4y-1=9 | | 69t/60=60t+360/60 | | 5x=0.1x^2 | | Y=0.055x+1.65 | | 5(x+5)=x-13 | | 4x+71=8x+5 | | (4x+71)=8x+5 | | 6^(x+9)=12 |