If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9/49=n2
We move all terms to the left:
9/49-(n2)=0
We add all the numbers together, and all the variables
-1n^2+9/49=0
We multiply all the terms by the denominator
-1n^2*49+9=0
Wy multiply elements
-49n^2+9=0
a = -49; b = 0; c = +9;
Δ = b2-4ac
Δ = 02-4·(-49)·9
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*-49}=\frac{-42}{-98} =3/7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*-49}=\frac{42}{-98} =-3/7 $
| 7x=+9 | | 6-9x=5x-9x+4 | | -3(3m-10)-7=-5 | | 4)24=—3k—3k | | -1+8x+46+x=180 | | 2/3(9x-6)=15 | | -x+3=3(x-3) | | 2x/3=8x= | | 50x^2=x2+5 | | 6=(10+x+3) | | x+10+x+10+3x=180 | | 6(10+x+3=) | | k-19=-21 | | 5.2=d/4 | | 7x-22=6x+12 | | w+11=6 | | 2x+5=+3x+4 | | 17x-11=180 | | -1+5q=4q-10 | | 20+2x=4(x-6) | | 13j-8j+3j+2j-9j=5 | | x+5(7x-1/4)+10=10x-(12+x) | | -8x+11=51 | | 0=-0.026x(x-46) | | (7x/5)-(2x/10)=-6 | | n-34=36 | | 8(4p+1)=32+ | | 3x+-15=6x+7 | | 5(5x+6)=12 | | 9p=95+45 | | 7r+4r-3r=16 | | 3(14)x=45x |