9/2x+15=x+20/2

Simple and best practice solution for 9/2x+15=x+20/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9/2x+15=x+20/2 equation:



9/2x+15=x+20/2
We move all terms to the left:
9/2x+15-(x+20/2)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
9/2x-(x+10)+15=0
We get rid of parentheses
9/2x-x-10+15=0
We multiply all the terms by the denominator
-x*2x-10*2x+15*2x+9=0
Wy multiply elements
-2x^2-20x+30x+9=0
We add all the numbers together, and all the variables
-2x^2+10x+9=0
a = -2; b = 10; c = +9;
Δ = b2-4ac
Δ = 102-4·(-2)·9
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{43}}{2*-2}=\frac{-10-2\sqrt{43}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{43}}{2*-2}=\frac{-10+2\sqrt{43}}{-4} $

See similar equations:

| 10/2x+45=x+16/2 | | 9/2x+15=x+10/2 | | 2x+3/4=-4/13 | | M(3-4m)=7+4(8-m2) | | (5x-2)^2=11 | | Y=2/5x+7 | | 6/10=25/x | | 600w^2+10w-600=0 | | 4/3x+10=x+20/3 | | 4+3+6^15=x | | 4+3=6^15=x | | 4+3=6x15=x | | 2n+6(n–2)=124 | | 9(3n+1)=6(3n+1)+8 | | 21-x=260 | | r=8.2+0.4r=-8.6 | | 1/8-10(3/4-3/8x)+5/8=-1/8(59-35x) | | 8m+4m=48= | | 8m+4m=48 | | C=45+15n | | 8p-10=-17+p | | 2k^2+6k+16=2k | | C=60n+150 | | C=45n+15 | | 3=x/x-200 | | -8(v+2)=-3v-26 | | 7x+1=12-4x | | 27=5(u+3)-8u | | (7x–6)*(8x+3)=0 | | -7w+3(w-6)=-14 | | -6v+2(v+8)=4 | | 11+15v=-7+13v4 |

Equations solver categories