9/10c+1/5c=4/7

Simple and best practice solution for 9/10c+1/5c=4/7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9/10c+1/5c=4/7 equation:



9/10c+1/5c=4/7
We move all terms to the left:
9/10c+1/5c-(4/7)=0
Domain of the equation: 10c!=0
c!=0/10
c!=0
c∈R
Domain of the equation: 5c!=0
c!=0/5
c!=0
c∈R
We add all the numbers together, and all the variables
9/10c+1/5c-(+4/7)=0
We get rid of parentheses
9/10c+1/5c-4/7=0
We calculate fractions
(-1000c^2)/2450c^2+2205c/2450c^2+490c/2450c^2=0
We multiply all the terms by the denominator
(-1000c^2)+2205c+490c=0
We add all the numbers together, and all the variables
(-1000c^2)+2695c=0
We get rid of parentheses
-1000c^2+2695c=0
a = -1000; b = 2695; c = 0;
Δ = b2-4ac
Δ = 26952-4·(-1000)·0
Δ = 7263025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{7263025}=2695$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2695)-2695}{2*-1000}=\frac{-5390}{-2000} =2+139/200 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2695)+2695}{2*-1000}=\frac{0}{-2000} =0 $

See similar equations:

| 7x−3,9=69,6 | | Y=(x+3)^3 | | -4=4/5a | | x+40+2x+50=180 | | 180=90+2x+(3x-20) | | 6+40y=45 | | 3x-13+x-3=360 | | 100-2n=12 | | -4n+6=-6 | | 5/6c+1/3c=6/7 | | 5(m+2)=5m-58 | | 11-2n=12 | | 6)-72=6n | | 4x+7+x-1=0 | | 10y+8y=-190 | | x+4/x=7/8 | | 4/5(x-6/5)=-84/25 | | 10x-17=90 | | 4x+2(3x+11)=112 | | 8+7x+4x=30 | | -5(7-2x)+3=-32+3x | | -x/14=-6/7 | | 5(2-7x)=-305 | | 5(11x-5)=86 | | x+3x+7x=96 | | 3x+7(2x-12)=18 | | ⅔x=6 | | 32.5/4.5x-4.5=X | | X+(7x-4)+(3x+8)=180 | | 3y+18=33 | | 7x+3(7x+14)=182 | | 63=5y-13 |

Equations solver categories