If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9+9(1-2n)=8n(3n+7)
We move all terms to the left:
9+9(1-2n)-(8n(3n+7))=0
We add all the numbers together, and all the variables
9(-2n+1)-(8n(3n+7))+9=0
We multiply parentheses
-18n-(8n(3n+7))+9+9=0
We calculate terms in parentheses: -(8n(3n+7)), so:We add all the numbers together, and all the variables
8n(3n+7)
We multiply parentheses
24n^2+56n
Back to the equation:
-(24n^2+56n)
-18n-(24n^2+56n)+18=0
We get rid of parentheses
-24n^2-18n-56n+18=0
We add all the numbers together, and all the variables
-24n^2-74n+18=0
a = -24; b = -74; c = +18;
Δ = b2-4ac
Δ = -742-4·(-24)·18
Δ = 7204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7204}=\sqrt{4*1801}=\sqrt{4}*\sqrt{1801}=2\sqrt{1801}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-74)-2\sqrt{1801}}{2*-24}=\frac{74-2\sqrt{1801}}{-48} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-74)+2\sqrt{1801}}{2*-24}=\frac{74+2\sqrt{1801}}{-48} $
| x^2+0.00125x=0.999375 | | 14=y3 | | 20=3/4r | | 9y+4(9y+9)=-3(-6+9)-7 | | 21x=57+2x | | 2(2+t)=10 | | (6x+10)=(4x+8) | | 0=2x3-9x-2 | | F(x)=-3x+75 | | (2x-3)(4x+5)(6x-7)=0 | | 2x*6-3x=-2 | | 52+x=78 | | P=2l=20 | | 1/2(x+6)=15 | | (X+3)^1/2-5(x+3)^1/4+6=0 | | 4e+6=-8=11e | | 6+5t=121 | | 18x-2=5+17x | | 3x/4-2=4x+10 | | 20n+9/n=2 | | 3m-9-8m=44 | | 4.5x+27=63 | | 25=4x-8-15x | | 5(x-4)=4(x+1) | | 100=1.04^x | | 2x-4/3=73 | | 5(y+8)=-2(y+1) | | 3=u/3-10 | | 8=0.3x+2 | | 6+9x=8+4x | | 2-0.375x=14 | | 0.5a+19=35 |