9+1/5x=3/10x

Simple and best practice solution for 9+1/5x=3/10x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9+1/5x=3/10x equation:



9+1/5x=3/10x
We move all terms to the left:
9+1/5x-(3/10x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 10x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/5x-(+3/10x)+9=0
We get rid of parentheses
1/5x-3/10x+9=0
We calculate fractions
10x/50x^2+(-15x)/50x^2+9=0
We multiply all the terms by the denominator
10x+(-15x)+9*50x^2=0
Wy multiply elements
450x^2+10x+(-15x)=0
We get rid of parentheses
450x^2+10x-15x=0
We add all the numbers together, and all the variables
450x^2-5x=0
a = 450; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·450·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*450}=\frac{0}{900} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*450}=\frac{10}{900} =1/90 $

See similar equations:

| -10q-4=6-9q | | x/7-7=65 | | -7x-3(6x+4)=13 | | 14n=11+6 | | 7(n)=42 | | 6+8s=7 | | 5-2a=4 | | 3x2-18x+5=47. | | 15+50.45x=52.95x | | 5p–10=3p-8 | | 9+5y=5-3y | | 4(y+4)-(2y+12)=0 | | 5p–10=3p–8 | | 7m-129=774 | | 5x+(x+52)=90 | | p-4=-54 | | -9-2g=g | | 3=x+35/8 | | z/27-2=2 | | x^2+32x+104=0 | | -6t-15=-5t | | m/18+107=111 | | 2x+0=26 | | 18-2n=6n+7-9n | | 2|x|-6=10 | | 4g+9=2(g-6)+29 | | -20h-20=-18h | | 8b=-7+8b | | 3(w-5)-8w=-30 | | 16t^2=2.17 | | 13+3z=7 | | 49+9=2(g-6)+2g |

Equations solver categories