9+(x*x)=64

Simple and best practice solution for 9+(x*x)=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9+(x*x)=64 equation:



9+(x*x)=64
We move all terms to the left:
9+(x*x)-(64)=0
We add all the numbers together, and all the variables
(+x*x)+9-64=0
We add all the numbers together, and all the variables
(+x*x)-55=0
We get rid of parentheses
x*x-55=0
Wy multiply elements
x^2-55=0
a = 1; b = 0; c = -55;
Δ = b2-4ac
Δ = 02-4·1·(-55)
Δ = 220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{220}=\sqrt{4*55}=\sqrt{4}*\sqrt{55}=2\sqrt{55}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{55}}{2*1}=\frac{0-2\sqrt{55}}{2} =-\frac{2\sqrt{55}}{2} =-\sqrt{55} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{55}}{2*1}=\frac{0+2\sqrt{55}}{2} =\frac{2\sqrt{55}}{2} =\sqrt{55} $

See similar equations:

| p-29=35 | | x-5^2=40 | | 24+5u=64 | | 16+x(x)=81 | | s+1=20 | | 4x-13=-3x+1 | | (x-5)2=40 | | x/6=4/x | | 18p+7p-6p+-17p=18 | | 3.54x-2.8=-4.67x+12.5 | | z+14=18 | | 8(s-78)=96 | | 4(2x-3)=-5(3x+1) | | 15y+–12y=–6 | | 6q/18=30 | | (7x+9)=12x | | 6m-3m-2m=19 | | 7r2=63 | | 3.54x-2.8=-4.67+12.5 | | 10x−25=5x+5​ | | 3.9g-17.9=-2.3 | | 2(6x+8)=4(25-0.5x) | | 16=y/2+12 | | 11.97=h-3.2 | | (-5x+11•(2x+11))=0 | | (3)11/5=p | | x/8+7=13 | | h+4.7=15 | | 3x/5+9=17+3x-15x/6 | | 13-3h=4 | | 2-8x=-48 | | 6x/5=72 |

Equations solver categories