9(y-4)=-10(y+2)+1/3

Simple and best practice solution for 9(y-4)=-10(y+2)+1/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9(y-4)=-10(y+2)+1/3 equation:



9(y-4)=-10(y+2)+1/3
We move all terms to the left:
9(y-4)-(-10(y+2)+1/3)=0
We multiply parentheses
9y-(-10(y+2)+1/3)-36=0
We multiply all the terms by the denominator
9y*3)-(-10(y+2)+1-36*3)=0
We add all the numbers together, and all the variables
9y*3)-(-10(y+2)=0
We multiply parentheses
9y*3)-(-10y-20=0
Wy multiply elements
27y^2-10y-20=0
a = 27; b = -10; c = -20;
Δ = b2-4ac
Δ = -102-4·27·(-20)
Δ = 2260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2260}=\sqrt{4*565}=\sqrt{4}*\sqrt{565}=2\sqrt{565}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{565}}{2*27}=\frac{10-2\sqrt{565}}{54} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{565}}{2*27}=\frac{10+2\sqrt{565}}{54} $

See similar equations:

| 2x+50=2(2x+16) | | 2p+2≥=10 | | 15x+40=80 | | 2(1/2k+3)=-4 | | y=-3(45)+163 | | p-286=186 | | d+26=264 | | 2p+2=≥10 | | 4(-4+1)-2x-4=162 | | 9=2q−-3 | | 3x+7x-5=6(5x+4) | | J-2(3+11j)=0 | | 36u^2-27u-14=0 | | 3(2n-7=9 | | 4y−-3=15 | | p+180=719 | | 8(2x+3)-6x=4x-9+6x | | 9(y-4)=-10(y+2+1/3) | | -8+2z=-2 | | y+23/2=9 | | 18+y=12y | | -9-x=-11-x | | 2/5-1/4x(x-8)=13/2 | | 1/2f-1=1/6f | | 86=g+65 | | -17=-5+4r | | 200=5*(2^n) | | s-4=31 | | 14y-10y=-64 | | (4x-1)=(8x+3) | | y=2(49) | | 4v-(7)/(5)=-(7v)/(5)-(5)/(3) |

Equations solver categories