If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9(8+x)=5+x(x+9)
We move all terms to the left:
9(8+x)-(5+x(x+9))=0
We add all the numbers together, and all the variables
9(x+8)-(5+x(x+9))=0
We multiply parentheses
9x-(5+x(x+9))+72=0
We calculate terms in parentheses: -(5+x(x+9)), so:We get rid of parentheses
5+x(x+9)
determiningTheFunctionDomain x(x+9)+5
We multiply parentheses
x^2+9x+5
Back to the equation:
-(x^2+9x+5)
-x^2+9x-9x-5+72=0
We add all the numbers together, and all the variables
-1x^2+67=0
a = -1; b = 0; c = +67;
Δ = b2-4ac
Δ = 02-4·(-1)·67
Δ = 268
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{268}=\sqrt{4*67}=\sqrt{4}*\sqrt{67}=2\sqrt{67}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{67}}{2*-1}=\frac{0-2\sqrt{67}}{-2} =-\frac{2\sqrt{67}}{-2} =-\frac{\sqrt{67}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{67}}{2*-1}=\frac{0+2\sqrt{67}}{-2} =\frac{2\sqrt{67}}{-2} =\frac{\sqrt{67}}{-1} $
| -1/3x-8=-20 | | -4=z/6 | | 1k=-1 | | -65=-5f | | 8x-9-3x+12=5(2x-6)-67 | | 2|3x-2|=24 | | -4(x-2)=x+7 | | 42=6v+6 | | 7m-5+m=15+7m+6m | | -3-3x=2x+6 | | 1/2x+15=21 | | X+2x7=-3x5 | | k^2=9/16 | | -9+2x=4x+9 | | 200=4x+x | | 7+a9=1 | | -3+-3x=2x+6 | | 10x-12x=30 | | 7-(3x)=-4x+13 | | -4=5+s | | -5x=-70 | | -1/3y+4y=3 | | m-2+5=14 | | 9(8+x)=5+x(x+5) | | x-17=128 | | 3b-7=2b+1=5b | | -7+3x=7+5x | | 5+3x-4=2x-4x+14 | | 4(8x+5)=32x-7 | | 3+7=5(a-3 | | x+6=18+x^2 | | 2(9-2x)=2x+4-7x |