9(3n+2)=7(6n+1)+4

Simple and best practice solution for 9(3n+2)=7(6n+1)+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9(3n+2)=7(6n+1)+4 equation:



9(3n+2)=7(6n+1)+4
We move all terms to the left:
9(3n+2)-(7(6n+1)+4)=0
We multiply parentheses
27n-(7(6n+1)+4)+18=0
We calculate terms in parentheses: -(7(6n+1)+4), so:
7(6n+1)+4
We multiply parentheses
42n+7+4
We add all the numbers together, and all the variables
42n+11
Back to the equation:
-(42n+11)
We get rid of parentheses
27n-42n-11+18=0
We add all the numbers together, and all the variables
-15n+7=0
We move all terms containing n to the left, all other terms to the right
-15n=-7
n=-7/-15
n=7/15

See similar equations:

| 35x+2.5=55 | | -7y+9=3y+49 | | 2/3x=-1/3+4 | | 8-w/10=0.6 | | 2(x+200)+x+200+x=3320 | | -8+0.6g=-2 | | 198=11-x | | 0.50n-4=6 | | (2x-23)+(x+4)=180 | | 9(2x-9.5)=-6.5+8x | | 2w+10(w)=28 | | 2w+10(w)=0 | | (6x+7)+(2x+3)=90 | | 7(y+3)+4=-3 | | 2x+7(3x-1)=108 | | 45-13x=15-11x | | 0=π(15x2+180x+540) | | 2x+3(x+3)=28 | | π(15x2+180x+540)=0 | | -5(3t-4)÷6t=8t-9 | | (m+9)=5 | | -5(3t-4)+6t=8t-9 | | y=285(1.75)^1194 | | 7x-18=9x+32 | | 5*(a−2)+10=20−3(1−a) | | q+-7=-80 | | -2(3t-3)+4t=5t-5 | | -5(4t-5)+2t=3t-6 | | 50+(5x)=90 | | 3x+14=× | | 4/5(5-20x)=-44 | | 10x+5x-20=180 |

Equations solver categories