If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9(2x+1)=81x-2/3x
We move all terms to the left:
9(2x+1)-(81x-2/3x)=0
Domain of the equation: 3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
9(2x+1)-(+81x-2/3x)=0
We multiply parentheses
18x-(+81x-2/3x)+9=0
We get rid of parentheses
18x-81x+2/3x+9=0
We multiply all the terms by the denominator
18x*3x-81x*3x+9*3x+2=0
Wy multiply elements
54x^2-243x^2+27x+2=0
We add all the numbers together, and all the variables
-189x^2+27x+2=0
a = -189; b = 27; c = +2;
Δ = b2-4ac
Δ = 272-4·(-189)·2
Δ = 2241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2241}=\sqrt{9*249}=\sqrt{9}*\sqrt{249}=3\sqrt{249}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-3\sqrt{249}}{2*-189}=\frac{-27-3\sqrt{249}}{-378} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+3\sqrt{249}}{2*-189}=\frac{-27+3\sqrt{249}}{-378} $
| x^2-(34/25)x+(9/25)=0 | | X+12=y+12×5÷2 | | 3r-5=2r+4 | | x+x+x+x=18.4 | | ((x+3)5)/((4x/5)+3)=(11/9) | | ((x+3)5)/(4x/5+3)=(11/9) | | ((x+3)5)/(4x/5)=(11/9) | | (5x+3)/(4x+3)=11/9 | | 5x+3/(4x+3)=11/9 | | (2^3x-1)=100 | | 5×3y=9 | | 10c-4=2c+12 | | 20/4(1+3)=x | | 3a^2-34a+95=0 | | 7x–3=2x+5 | | 7y-4=32 | | 3x/4+6=-2 | | x=14.7 | | x-(22500+.25(x-140000))=200000 | | x-(50000+.3(x-250000))=200000 | | ×+7=6x-3 | | 35^2-18n-8=0 | | 3.5/28=10/x | | 0.2*0.1*x=12 | | 2(x+2)=4(x-1) | | 3(x+8)=96 | | −5x−3−2x=12−x | | x-1=15-3x-x | | x−1=15−3x−x | | d−1=15−3d−d | | (D^4+4D^3+14D^2+-20D+25)y=0 | | -x-7/5+7=3 |