9(1-3y)=4+y(3-y)

Simple and best practice solution for 9(1-3y)=4+y(3-y) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9(1-3y)=4+y(3-y) equation:



9(1-3y)=4+y(3-y)
We move all terms to the left:
9(1-3y)-(4+y(3-y))=0
We add all the numbers together, and all the variables
9(-3y+1)-(4+y(-1y+3))=0
We multiply parentheses
-27y-(4+y(-1y+3))+9=0
We calculate terms in parentheses: -(4+y(-1y+3)), so:
4+y(-1y+3)
determiningTheFunctionDomain y(-1y+3)+4
We multiply parentheses
-1y^2+3y+4
Back to the equation:
-(-1y^2+3y+4)
We get rid of parentheses
1y^2-3y-27y-4+9=0
We add all the numbers together, and all the variables
y^2-30y+5=0
a = 1; b = -30; c = +5;
Δ = b2-4ac
Δ = -302-4·1·5
Δ = 880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{880}=\sqrt{16*55}=\sqrt{16}*\sqrt{55}=4\sqrt{55}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-4\sqrt{55}}{2*1}=\frac{30-4\sqrt{55}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+4\sqrt{55}}{2*1}=\frac{30+4\sqrt{55}}{2} $

See similar equations:

| 20x+x=x | | 15f=17f-10 | | -5x+2=4x+27 | | 7t-2t-5t+3t=18 | | -12-5x=-12-8x | | 1a+5a=-12 | | 29=34x+5 | | 4(x=16)/2=24 | | 10v-9v=15 | | 8p=16+9p | | 6n+n+n-3=4+n+1 | | x12=34 | | 5c+1=2c-11 | | 20b=4+18b | | 5g-4g=9 | | 12(x)-18=30 | | 8(t-6)+58=2(4t+5 | | 16r-12r=12 | | 7f+10=-6+9f | | -2(4m-5)=30 | | (x=3)=10 | | 8p-5p=15 | | 4n-11=3n | | 1x+2x=-6 | | −40=-10r−10r | | 2p+237=493 | | 20x=5x=5/20x=1/4 | | -15=-3(x-2) | | 6x+5-2x=1 | | 18a-15a=18 | | 13x−11x=6 | | 2x=1,5x+50 |

Equations solver categories