If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8z^2+7z-60=0
a = 8; b = 7; c = -60;
Δ = b2-4ac
Δ = 72-4·8·(-60)
Δ = 1969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{1969}}{2*8}=\frac{-7-\sqrt{1969}}{16} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{1969}}{2*8}=\frac{-7+\sqrt{1969}}{16} $
| -8i+6=-10i+10 | | –10(c+7)=40 | | 5i−5=9i+3 | | 2u+16=18 | | 6.908gg=0.173. | | –5v=3v−8v | | -2(c+-8)+-9=-1 | | 8h+6h+–10h+15h=–19 | | 33=-15k | | m+2m=-3m+12 | | y=25000(-1.06)^8 | | 9.5z=-152 | | d/2=−14.4 | | 30=15+15x | | x.7+4=56 | | -3v-7(-6v-9)=6(6v+6) | | 10x+18=3x+24 | | 3x^2-6^2=0 | | 4(5)=11y=-3 | | -3v-7(-6v-9)=6(6v+6 | | 86.9-t=22.4 | | y=-2(1)-6 | | 8x+7x-175=180 | | -3(7+2x)=12 | | 14c−10c=12 | | 9n-45=12n-15 | | 8x²=180 | | 14=b-9 | | y=-2(0)-6 | | 0=-2(j-5) | | 0.5n+2.5=5.7 | | 2b+8-5b+4=13+8b-5 |