If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2+10y=0
a = 8; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·8·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*8}=\frac{-20}{16} =-1+1/4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*8}=\frac{0}{16} =0 $
| 4(t+3/2)-1=0 | | 12x−6x+4x=10x | | 15x+3x+7x=25x | | 10x−3x−1=7x+1 | | 16+(4n–6)–(2n+4)= | | .4x^2−12x−15=0 | | l=315/(18*54) | | 4+4.6x=3x/3-1 | | 8=4f−77 | | .4x2−12x−15=0 | | 4(3x+6)=5x-2(-5x-4) | | 19xx=97 | | x-23=90 | | w+w=50 | | 2x^2+3=x^2+7 | | (2-(+5m)(-5)=40 | | (2-5m)(-5)=40 | | 4*(x^2)+12*(x)+9=0 | | 9x+6+3x=18-48+9x | | 4x+3x-9=8x-1 | | 655*23.50+15.75l=34954 | | 655*23.50+15.75a=34,954 | | x^2=12x=8x-4 | | 655*29.50+15.75a=34,954 | | 3(-5-4x)=-2(4+5x) | | -2(x+3)-5x=-34 | | 655(29.50)+15.75l=34954 | | 3(x+4=45 | | 2x=√12−x+3 | | 4x+40+x=90 | | -2x+15=3x+5 | | 3/4-1/2x=2 |