If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y+4(2+y)=3(y-4)10y
We move all terms to the left:
8y+4(2+y)-(3(y-4)10y)=0
We add all the numbers together, and all the variables
8y+4(y+2)-(3(y-4)10y)=0
We multiply parentheses
8y+4y-(3(y-4)10y)+8=0
We calculate terms in parentheses: -(3(y-4)10y), so:We add all the numbers together, and all the variables
3(y-4)10y
We multiply parentheses
30y^2-120y
Back to the equation:
-(30y^2-120y)
12y-(30y^2-120y)+8=0
We get rid of parentheses
-30y^2+12y+120y+8=0
We add all the numbers together, and all the variables
-30y^2+132y+8=0
a = -30; b = 132; c = +8;
Δ = b2-4ac
Δ = 1322-4·(-30)·8
Δ = 18384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18384}=\sqrt{16*1149}=\sqrt{16}*\sqrt{1149}=4\sqrt{1149}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(132)-4\sqrt{1149}}{2*-30}=\frac{-132-4\sqrt{1149}}{-60} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(132)+4\sqrt{1149}}{2*-30}=\frac{-132+4\sqrt{1149}}{-60} $
| m=86m−5 | | 3-2f=47 | | 2x-47=37 | | m=86(m−5) | | 8+5x=−6x+30 | | 18=−9b | | 6x−9=2(2x+8) | | 5(x-2)=4x+10-6x | | 15=-2c+19 | | y=98-16/5 | | x+2x-3x+12+6x+18=66 | | 98=11.7a+39.5 | | (3x/4)-2=(7/2) | | 6x2+20=4(3x+5) | | 6.4-0.2x=2.4 | | x+5+2x=10 | | (3x-4)-2=(7/2) | | 5x1.3=13.3 | | f+1/2=1/4 | | 27=-9c+63 | | p+7=21p= | | 1/x+1+2=11/x+1 | | n-8=17n= | | ⅕x-3=17 | | x^2-26=23 | | 1/(x+1)+2=11/(x+1) | | 83=g+58 | | 24/6=nn= | | 14/28=8/n | | 2x−1−1=x−3−(−5+x) | | a+21=35 | | 64=8nn= |