8y+2(y-9)=4(y+1)-3

Simple and best practice solution for 8y+2(y-9)=4(y+1)-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8y+2(y-9)=4(y+1)-3 equation:


Simplifying
8y + 2(y + -9) = 4(y + 1) + -3

Reorder the terms:
8y + 2(-9 + y) = 4(y + 1) + -3
8y + (-9 * 2 + y * 2) = 4(y + 1) + -3
8y + (-18 + 2y) = 4(y + 1) + -3

Reorder the terms:
-18 + 8y + 2y = 4(y + 1) + -3

Combine like terms: 8y + 2y = 10y
-18 + 10y = 4(y + 1) + -3

Reorder the terms:
-18 + 10y = 4(1 + y) + -3
-18 + 10y = (1 * 4 + y * 4) + -3
-18 + 10y = (4 + 4y) + -3

Reorder the terms:
-18 + 10y = 4 + -3 + 4y

Combine like terms: 4 + -3 = 1
-18 + 10y = 1 + 4y

Solving
-18 + 10y = 1 + 4y

Solving for variable 'y'.

Move all terms containing y to the left, all other terms to the right.

Add '-4y' to each side of the equation.
-18 + 10y + -4y = 1 + 4y + -4y

Combine like terms: 10y + -4y = 6y
-18 + 6y = 1 + 4y + -4y

Combine like terms: 4y + -4y = 0
-18 + 6y = 1 + 0
-18 + 6y = 1

Add '18' to each side of the equation.
-18 + 18 + 6y = 1 + 18

Combine like terms: -18 + 18 = 0
0 + 6y = 1 + 18
6y = 1 + 18

Combine like terms: 1 + 18 = 19
6y = 19

Divide each side by '6'.
y = 3.166666667

Simplifying
y = 3.166666667

See similar equations:

| -2(11q-7)-16=2(-11q-1) | | 6y=4x-18 | | -5(3t-5)+3t=5t-4 | | 5(6+12t)=6(10t+5) | | 7x+3+6x+11= | | 3x^4-8x^3-x^2=0 | | -10+5d=5(d-2) | | -4(7x-1)+9=-28x+13 | | 4x-20-3x+9=9+12 | | 6x+10+3x+9=4x+9 | | 5x-12/6=x+9 | | 15+17h=14-3(-4h-20) | | 2(64/84) | | 17+b=5-2b | | 0.04(y-8)+0.08y=0.02y-0.9 | | -9c+10=100 | | 2x^2+3x-84=0 | | 12.6-2.5x-6.7=1.5(x-6) | | 6x-18+9x=14x-6 | | 165-1(15x+5)=170 | | 5+13m-2=9m+47-7m | | 0.50x+0.35(50)=39.5 | | 6y+12=3(4y-8) | | 14f-20=15 | | 25+10x=-x^2 | | 12x+7+14x-13=180 | | 3x^4-6x^3-3x^2=0 | | 2x^2+3x-39=0 | | x^2-8x-35=0 | | -(x+5)=x-(2x+6) | | 2x^2-20x+17=0 | | n^2+n=1122 |

Equations solver categories