If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-800=0
a = 8; b = 0; c = -800;
Δ = b2-4ac
Δ = 02-4·8·(-800)
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-160}{2*8}=\frac{-160}{16} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+160}{2*8}=\frac{160}{16} =10 $
| -10-4g=-3g | | 3x^2=6x=0 | | -4m+7=-5m | | 3x+7/12x=100 | | 7.5+x=16 | | D=300t+1200 | | -6=4-5v | | 180=x+51 | | 10=72/z=20 | | -62=-13x-(-3) | | 9y-1=-28 | | 20=c | | 15=3(g−11) | | 9x^2+6x+12x+8x=0 | | 10j+–3j−–4=–3 | | X-(15x-5)=-(-3x+5 | | 3^(x)=2^(x+1) | | 5(4c-1)-8=18c+5 | | 15x-15=2x+6 | | 2x10=-3x | | 9x2+6x+12x+8=0 | | -5k+3=18 | | 6(x+3)=26 | | 3c-6=4c | | y^2+7y-120=0 | | -16=6+5x | | 24=3x^2+2x | | r^2-15r=-44 | | -3+3n=4 | | -11y=-7 | | 11x-5+9x-3=136 | | 80+x+95+38=160 |