If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-4x-18=0
a = 8; b = -4; c = -18;
Δ = b2-4ac
Δ = -42-4·8·(-18)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{37}}{2*8}=\frac{4-4\sqrt{37}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{37}}{2*8}=\frac{4+4\sqrt{37}}{16} $
| 10.5+3a=5a+2.5 | | 4e+7=2e+9 | | 7+17x=4(22x+2)+x | | 12+16x=2(3x+31)+x | | -4x–5=6–11x | | x=-5/3x-8 | | -2y^2-6y+18=0 | | 7x+19=11x-89=60+60 | | 7x÷8=17 | | x(x4+2x2+1)=0 | | −6+20x=2(20x+7)+x | | 8x4=7x-3x | | 3(x-7)+8x=-10 | | j/4=1/2 | | -6=(2/3)m | | 3m+11=32 | | S=1/5(300-10e) | | x-7=(-3*(x+1))/5 | | -n+5=8 | | 9y–4=6y+29 | | 2^{3x+5}=64^{x-7} | | x+x*0.095=100000 | | .520d+14.7=31 | | x^2-4x-21=24 | | 16²x-3=4x+2 | | 1/10w+2/5(1/2w)=3/10w | | 10(1/5x+3)=4x+30 | | 18=2a+5 | | -8x2-6x+5=0 | | 8=-2q+2 | | 10=(-2x)-3 | | 7r=10r-15 |