If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-40x+48=0
a = 8; b = -40; c = +48;
Δ = b2-4ac
Δ = -402-4·8·48
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8}{2*8}=\frac{32}{16} =2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8}{2*8}=\frac{48}{16} =3 $
| p/4=2/3 | | -w+2=2w-4 | | n/2=6/5 | | 6+q=32 | | 2/5c-4=-10 | | -9=-4-5k | | -13=-8+7j | | 3(8+4a)-2(10+7a=0 | | 8=-3h+5 | | -7-g=-15 | | 11-3f=-4 | | 5x+18=3x+6 | | -2+3e=19 | | 3-4d=19 | | 15b+40=5b+1210 | | 2a=10=18 | | x/3=140 | | (2a+3)=(5a+2) | | a÷5=7÷5 | | a÷5=7÷5= | | 6x+(9–4x)=20–(3x–34)(=) | | X*x*0,1=270 | | 8(x=5)=-4(x+8) | | (3x+40)+(5x-20)=180 | | x-3-2x-4=x÷2 | | x-3-2x-4=x÷2-1-x-3 | | X2+12x-45=0 | | 3x÷6=12 | | 9m+8=4m-7 | | u|7+9=17 | | 3x+(3x+60)=180 | | 10y+9=-11 |