If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-24x=0
a = 8; b = -24; c = 0;
Δ = b2-4ac
Δ = -242-4·8·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24}{2*8}=\frac{0}{16} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24}{2*8}=\frac{48}{16} =3 $
| 11c-33=8*4c | | 0.8(2-g=3.2 | | 18+5s=7s | | 3x+4(x-1)=17 | | -7=13−4z | | 7v+5(6+v)=-26+5v | | 8x+2=-5x+18=12 | | 2j+9=17 | | 3=1/4a=31 | | 13−4z=-7 | | 12(p-10/3=-8 | | 6v-4+2v=8v | | 8x+2=-5x+18=13 | | 3x+4 =6 | | |y|=15 | | 12(p-21/3=-8 | | -11/3q=-22 | | 2/3(x)-5=1/2(x)-3 | | -21=−6−3y | | 26x-3x+9=3x+49 | | 5+(x-5)+(x-4)=16+10+(×-10) | | n-5-1=-6+n | | 7x+3-5x+1=16 | | 3(x-2)=2(x-10) | | 2-3n=5n+10 | | 36000=5s+s | | 10/3b=40 | | 14=7y+3(y+8) | | -7a-12=65 | | -2(b-4)-(-7b+5)=4b+3+8b-7 | | 1-(x-2)=5+x | | -7a-12=41 |